
Chapter 

Linear Regression with One 
Predictor Variable 

Regression analysis is a statistical methodology that utilizes the relation between two or 
more quantitative variables so that a response or outcome variable can be predicted from 
the other, or others. This methodology is widely used in business, the social and behavioral 
sciences, the biological sciences, and many other disciplines. A few examples of applications 
are: 

1. Sales of a product can be predicted by utilizing the relationship between sales and amount 
of advertising expenditures. 

2 The performance of an employee on a job can be predicted by utilizing the relationship 
between performance and a battery of aptitude tests. 

3. The size of the vocabulary of a child can be predicted by utilizing the relationship 
between size of vocabulary and age of the child and amount of education of the parents. 

4. The length of hospital stay of a surgical patient can be predicted by utilizing the rela-
tionship between the time in the hospital and the severity of the operation. 

In Part I we take up regression analysis when a single predictor variable is used for 
predicting the response or outcome variable of interest. In Parts II and III, we consider 
regression analysis when two or more variables are used for making predictions. In this 
chapter, we consider the basic ideas of regression analysis and discuss the estimation of the 
parameters of regression models containing a single predictor variable. 

1.1 Relations between Variables 
The concept of a relation between two variables, such as between family income and family 
expenditures for housing, is a familiar one. We distinguish between afunctional relation 
and a statistical relation, and consider each of these in tum. 

Functional Relation between Two Variables 
A functional relation between two variables is expressed by a mathematical formula. If X 

2 
denotes the independent variable and Y the dependent variable, a functional relation is 
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150 X 

Y = f(X) 

Given a particular value of X, the function f indicates the corresponding value of Y. 

Consider the relation between doUar sales (Y) of a product sold at a fixed price and number 
of units sold (X). If the selling price is $2 per unit, the relation is expressed by the equation: 

Y=2X 

This functional relation is shown in Figure 1.1. Number of units sold and dollar sales during 
three recent periods (while the unit price remained constant at $2) were as follows: 

Number of Dollar 
Period Units Sold Sales 

1 75 $150 
2 25 50 
3 130 260 

These observations are plotted also in Figure 1.1. Note that aU faU directly on the line of 
functional relationship. This is characteristic of aU functional relations. 

Statistical Relation between Two Variables 

Example 1 

A statistical relation, unlike a functional relation, is not a perfect one. In general, the 
observations for a statistical relation do not faU directly on-the curve of relationship. 

Perfonnance evaluations for 10 employees were obtained at midyear and at year-end. 
These data are plotted in Figure 1.2a. Year-end evaluations are taken as the dependent or 
response variable Y, and midyear evaluations as the independent, explanatory, or predictor 
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FIGURE 1.2 Statistical Relation between Midyear Perfonnance Evaluation and Year·End Evaluation. 
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variable X. The plotting is done as before. For instance, the midyear and year-end perfor-
mance evaluations for the first employee are plotted at X = 90, Y = 94. 

Figure l.2a clearly suggests that there is a relation between midyear and year-end evalua-
tions, in the sense that the higher the midyear evaluation, the higher tends to be the year-end 
evaluation. However, the relation is not a perfect one. There is a scattering of points, sug-
gesting that some of the variation in year-end evaluations is not accounted for by midyear 
performance assessments. For instance, two employees had midyear evaluations of X = 80, 
yet they received somewhat different year-end evaluations. Because of the scattering of 
points in a statistical relation, Figure 1.2a is called a scatter diagram or scatter plot. In 
statistical terminology, each point in the scatter diagram represents a trial or a case. 

In Figure 1.2b, we have plotted a line of relationship that describes the statistical relation 
between midyear and year-end evaluations. It indicates the general tendency by which year-
end evaluations vary with the level of midyear performance evaluation. Note that most of 
the points do not fall directly on the line of statistical relationship. This scattering of points 
around the line represents variation in year-end evaluations that is not associated with 
midyear performance evaluation and that is usually considered to be of a random nature. 
Statistical relations can be highly useful, even though they do not have the exactitude of a 
functional relation. 

Figure 1.3 presents data on age and level of a steroid in plasma for 27 healthy females 
between 8 and 25 years old. The data strongly suggest that the statistical relationship is 
curvilinear (not linear). The curve of relationship has also been drawn in Figure 1.3. It 
implies that, as age increases, steroid level increases up to a point and then begins to level 
off. Note again the scattering of points around the curve of statistical relationship, typical 
of all statistical relations. 
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FIGURE 1.3 Curvilinear Statistical Relation between Age and Steroid Level in,Healthy Females Aged 8 to 25. 
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1.2 Regression Models and Their Uses 

Historical Origins 
Regression analysis was first developed by Sir Francis Galton in the latter part of the 
19th century. Galton had studied the relation between heights of parents and children and 
noted that the heights of children of both tall and short parents appeared to "revert" or 
"regress" to the mean of the group. He considered this tendency to be a regression to 
"mediocrity." Galton developed a mathematical description of this regression tendency, the 
precursor of today's regression models. 

The term regression persists to this day to describe statistical relations betwe!!n variables. 

Basic Concepts 

Example 

A regression model is a formal means of expressing the two essential ingredients of a 
statistical relation: 

1. A tendency of the response variable Y to vary with the predictor variable X in a systematic 
fashion. 

2. A scattering of points around the curve of statistical relationship. 

These two characteristics are embodied in a regression model by postulating that: 

1. There is a probability disfiibution of Y for each level of X. 
2. The means of these probability distributions vary in some systematic fashion with X. 

Consider again the performance evaluation example in FiglU"e 1.2. The year-end evaluation Y 
is treated in a regression model as a random variable. For each level of midyear performance 
evaluation, there is postulated a probability distribution of Y. Figure 1.4 shows such a 
probability distribution for X = 90, which is the midyear evaluation for the first employee. 
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FIGURE 1.4 
Pictorial 
Representation 
of Regression 
Model. 
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The actual year-end evaluation of this employee, Y = 94, is then viewed as a random 
selection from this probability distribution. 

Figure 1.4 also shows probability distributions of Y for midyear evaluation levels X = 50 
and X = 70. Note that the means of the probability distributions have a systematic relation 
to the level of X. This systematic relationship is called the regression function of Y on X. 
The graph of the regression function is called the regression curve. Note that in Figure 1.4 
the regression function is slightly curvilinear. This would imply for our example that the in-
crease in the expected (mean) year-end evaluation with an increase in midyear performance 
evaluation is retarded at higher levels of midyear performance. 

Regression models may differ in the form of the regression function (linear, curvilinear), 
in the shape of the probability distributions of Y (symmetrical, skewed), and in other ways. 
Whatever the variation, the concept of a probability distribution of Y for any given X is the 
formal counterpart to the empirical scatter in a statistical relation. Similarly, the regression 
curve, which describes the relation between the means of the probability distributions 
of Y and the level of X, is the counterpart to the general tendency of Y to vary with X 
systematically in a statistical relation. 

Regression Models with More than One Predictor Variable. Regression models may 
contain more than one predictor variable. Three examples follow. 

1. In an efficiency study of 67 branch offices of a consumer finance chain, the response 
variable was direct operating cost for the year just ended. There were four predictor variables: 
average size of loan outstanding during the year, average number of loans outstanding, total 
number of new loan applications processed, and an index of office salaries. 

2. In a tractor purchase study, the response variable was volume (in horsepower) of 
tractor purchases in a sales territory of a farm equipment firm. There were nine predictor 
variables, including average age of tractors on farms in the territory, number of farms in the 
territory, and a quantity index of crop production in the territory. 

3. In a medical study of short children, the response variable was the peak plasma growth 
hormone level. There were 14 predictor variables, including age, gender, height, weight, 
and 10 skinfold measurements. 

The model features represented in Figure 1.4 must be extended into further dimensions 
when there is more than one predictor variable. With two predictor variables Xl and X2, 
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for instance, a probability distribution of Y for each (X" X 2) combination is assumed 
by the regression model. The systematic relation between the means of these probability 
distributions and the predictor variables Xl and X2 is then given by a regression surface. 

Construction of Regression Models 
Selection of Predictor Variables. Since reality must be reduced to manageable propor-
tions whenever we construct models, only a limited number of explanatory or predictor 
variables can-or should-be included in a regression model for any situation of interest. 
A central problem in many exploratory studies is therefore that of choosing, for a regres-
sion model, a set of predictor variables that is "good" in some sense for the purposes of 
the analysis. A major consideration in making this choice is the extent to which a chosen 
variable contributes to reducing the remaining variation in Yafter allowance is made for 
the contributions of other predictor variables that have tentatively been included in the 
regression model. Other considerations include the importance of the variable ks a causal 
agent in the process under analysis; the degree to which observations on the variable can 
be obtained more accurately, or quickly, or economically than on competing variables; and 
the degree to which the variable can be controlled. In Chapter 9, we will discuss procedures 
and problems in choosing the predictor variables to be included in the regression model. 

Functional Form of Regression Relation. The choice of the functional form of the 
regression relation is tied to the choice of the predictor variables. Sometimes, relevant theory 
may indicate the appropriate functional form. Learning theory, for instance, may indicate 
that the regression function relating unit production cost to the number of previous times the 
item has been produced should have a specified shape with particular asymptotic properties. 

More frequently, however, the functional form of the regression relation is not known in 
advance and must be decided upon empirically once the data have been collected. Linear 
or quadratic regression functions are often used as satisfactory first approximations to 
regression functions of unknown nature. Indeed, these simple types of regression functions 
may be used even when theory provides the relevant functional form, notably when the 
known form is highly complex but can be reasonably approximated by a linear or quadratic 
regression function. Figure l.5a illustrates a case where the complex regression function 

FIG URE 1.5 Uses of Linear Regression Functions to Approximate Complex Regression 
Functions-Bold Line Is the True Regression Function and Dotted Line Is the Regression 
Approximation. 
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may be reasonably approximated by a linear regression function. Figure l.5b provides an 
example where two linear regression functions may be used "piecewise" to approximate a 
complex regression function. 

Scope of Model. In formulating a regression model, we usually need to restrict the cov-
erage of the model to some interval or region of values of the predictor variable(s). The 
scope is determined either by the design of the investigation or by the range of data at hand. 
For instance, a company studying the effect of price on sales volume investigated six price 
levels, ranging from $4.95 to $6.95. Here, the scope of the model is limited to price levels 
ranging from near $5 to near $7. The shape of the regression function substantially outside 
this range would be in serious doubt because the investigation provided no evidence as to 
the nature of the statistical relation below $4.95 or above $6.95. 

Uses of Regression Analysis 
Regression analysis serves three major purposes: (I) description, (2) control, and (3) predic-
tion. These purposes are illustrated by the three examples cited earlier. The tractor purchase 
study served a descriptive purpose. In the study of branch office operating costs, the main 
purpose was administrative control; by developing a usable statistical relation between cost 
and the predictor variables, management was able to set cost standards for each branch office 
in the company chain. In the medical study of short children, the purpose was prediction. 
Clinicians were able to use the statistical relation to predict growth hormone deficiencies 
in short children by using simple measurements of the children. 

The several purposes of regression analysis frequently overlap in practice. The branch 
office example is a case in point. Knowledge of the relation between operating cost and 
characteristics of the branch office not only enabled management to set cost standards for 
each office but management could also predict costs, and at the end of the fiscal year it 
could compare the actual branch cost against the expected cost. 

Regression and Causality 
The existence of a statistical relation between the response variable Y and the explanatory or 
predictor variable X does not imply in any way that Y depends causally on X. No matter how 
strong is the statistical relation between X and Y, no cause-and-effect pattern is necessarily 
implied by the regression model. For example, data on size of vocabulary (X) and writing 
speed (Y) for a sample of young children aged 5-10 will show a positive regression relation. 
This relation does not imply, however, that an increase in vocabulary causes a faster writing 
speed. Here, other explanatory variables, such as age of the child and amount of education, 
affect both the vocabulary (X) and the writing speed (Y). Older children have a larger 
vocabulary and a faster writing speed. 

Even when a strong statistical relationship reflects causal conditions, the causal condi-
tions may act in the opposite direction, from Y to X. Consider, for instance, the calibration 
of a thermometer. Here, readings of the thermometer are taken at different known tempera-
tures, and the regression relation is studied so that the accuracy of predictions made by using 
the thermometer readings can be assessed. For this purpose, the thermometer reading is the 
predictor variable X, and the actual temperature is the response variable Y to be predicted. 
However, the causal pattern here does not go from X to Y, but in the opposite direction: the 
actual temperature (Y) affects the thermometer reading (X). 
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These examples demonstrate the need for care in drawing conclusions about causal 
relations from regression analysis. Regression analysis by itself provides no information 
about causal patterns and must be supplemented by additional analyses to obtain insights 
about causal relations. 

Use of Computers 
Because regression analysis often entails lengthy and tedious calculations, computers are 
usually utilized to perform the necessary calculations. Almost every statistics package for 
computers contains a regression component. While packages differ in many details, their 
basic regression output tends to be quite similar. 

Mter an initial explanation of required regression calculations, we shall rely on computer 
calculations for all subsequent examples. We illustrate computer output by presenting output 
and graphics from BMDP (Ref. 1.1), MINITAB (Ref. 1.2), SAS (Ref. 1.3), SPSS (Ref. 1.4), 
SYSTAT (Ref. 1.5), JMP (Ref. 1.6), S-Plus (Ref. 1.7), and MATLAB (Ref. 1.8);,. 

1.3 Simple Linear Regression Model with Distribution 
of Error Terms Unspecified 

Formal Statement of Model 
In Part I we consider a basic regression model where there is only one predictor variable 
and the regression function is linear. The model can be stated as follows: 

Y; = f30 + f31X; + 10; (1.1) 
where: 

Y; is the value of the response variable in the ith trial 
f30 and f31 are parameters 
X; is a known constant, namely, the value of the predictor variable in the ith trial 
10; is a random error term with mean E{Cd = 0 and variance u 2 {Cd = u 2 ; 10; and Cj are 
uncorrelated so that their covariance is zero (i.e., u{c;, Cj} = 0 for all i, j; i =1= j) 
i =_1, ... , n 

Regression model (1.1) is said to be simple, linear in the parameters, and linear in the 
predictor variable. It is "simple" in that there is only one predictor variable, "linear in the 
parameters," because no parameter appears as an exponent or is multiplied or divided by 
another parameter, and "linear in the predictor variable," because this variable appears only 
in the first power. A model that is linear in the parameters and in the predictor variabie is 
also called ajirst-order model. 

Important Features of Model 
1. The response Y; in the ith trial is the sum of two components: (1) the constant term 

f30 + f31 Xi and (2) the random term..c;. Hence, Yi is a rando...m variable. 
2. Since E{c;} = 0, it follows from (A.13c) in Appendix A that: 

E{Y;} = E{f3o + f31 X ; + cd = f30 + fhX; + E{Cd = f30 + f31X; 

Note that f30 + f31X; plays the role ofthe constant a in (A. 13c). 
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Example 

Thus, the response Vi, when the level of X in the ith trial is Xi, comes from a probability 
distribution whose mean is: 

(1.2) 

We therefore know that the regression function for model (1.1) is: 

(1.3) 

since the regression function relates the means of the probability distributions of Y for given 
X to the level of X. 

3. The response Yi in the ith trial exceeds or falls short of the value of the regression 
function by the error term amount Ci. 

4. The error terms Ci are assumed to have constant variance 0-2• It therefore follows that 
the responses Yi have the same constant variance: 

(1.4) 

since, using (A.I6a), we have: 

0-2{,80 + ,81 Xi + cd = 0-2{c;} = 0-2 

Thus, regression model (1.1) assumes that the probability distributions of Y have the same 
variance 0- 2, regardless of the level of the predictor variable X. 

5. The error terms are assumed to be uncorrelated. Since the error terms Ci and Cj are 
uncorrelated, so are the responses Yi and Yj • 

6. In summary, regression model (1.1) implies that the responses Yi come from proba-
bility distributions whose means are E{Y;} = ,80 + ,81Xi and whose variances are 0-2, the 
same for all levels of X. Further, any two responses Yi and Yj are uncorrelated. 

A consultant for an electrical distributor is studying the relationship between the number 
of bids requested by construction contractors for basic lighting equipment during a week 
and the time required to prepare the bids. Suppose that regression model (1.1) is applicable 
and is as follows: 

Yi = 9.5 + 2.IXi + Ci 

where X is the number of bids prepared in a week and Y is the number of hours required to 
prepare the bids. Figure 1.6 contains a presentation of the regression function: 

E{Y} = 9.5 + 2.IX 

Suppose that in the ith week, Xi = 45 bids are prepared and the actual number of hours 
required is Yi = 108. In that case, the error term value is Ci = 4, for we have 

E{Y;} = 9.5 + 2.1(45) = 104 

and 

Yi = 108 = 104 + 4 

Figure 1.6 displays the probability distribution of Y when X = 45 and indicates from 
where in this distribution the observation Yi = 108 came. Note again that the error term Ci 

is simply the deviation of Yi from its mean value E{Y;}. 



FIGURE 1.6 
Illustration of 
Simple Linear 
Regression 
Model (1.1). 

FIGURE 1.7 
Meaning of 
Parameters of 
Simple Linear 
Regression 
Model (l.l). 
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Figure 1.6 also shows the probability distribution of Y when X = 25. Note that this 
distribution exhibits the same variability as the probability distribution when X = 45, in 
conformance with the requirements of regression model (1.1). 

Meaning of Regression Parameters 

Example 

The parameters f30 and f3, in regression model (1.1) are called regression coefficients. f3, 
is the slope of the regression line. It indicates the change in the mean of the probability 
distribution of Y per unit increase in X. The parameter f30 is the Y intercept of the regression 
line. When the scope of the model includes X = 0, f30 gives the mean of the probability 
distribution of Y at X = O. When the scope of the model does not cover X = 0, f30 does 
not have any particular meaning as a term in the regression model. 

Figure 1.7 shows the regression function: 
E{Y} = 9.5 + 2.1X 

for the electrical distributor example. The slope f3, = 2.1 i-ndicates that the preparation of 
one additional bid in a week leads to an increase in the mean of the probability distribution 
of Y of 2. I hours. 

The intercept f30 = 9.5 indicates the value of the regression function at X = O. However, 
since the linear regression model was formulated to apply to weeks where the number of 
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bids prepared ranges from 20 to 80, f30 does not have any intrinsic meaning of its own 
here. If the scope of the model were to be extended to X levels near zero, a model with 
a curvilinear regression function and some value of f30 different from that for the linear 
regression function might well be required. 

Alternative Versions of Regression Model 
Sometimes it is convenient to write the simple linear regression model (1.1) in somewhat 
different, though equivalent, forms. Let Xo be a constant identically equal to 1. Then, we 
can write (1.1) as follows: 

Y; = f3oXo + f3, X; + 8i where Xo == 1 (1.5) 

This version of the model associates an X variable with each regression coefficient. 
An alternative modification is to use for the predictor variable the deviation Xi - X 

rather than Xi. To leave model (1.1) unchanged, we need to write: 

Ii = f30 + f3, (X; - X) + f3,X + 8; 

= (f3o + f3,X) + f3, (X; - X) + 8i 

= + f31(Xi - X) + 8; 

Thus, this alternative model version is: 

Yi = + f3,(Xi - X) + 8; 

where: 

= f30 + f3,X 
We use models (1.1), (1.5), and (1.6) interchangeably as convenience dictates. 

1.4 Data for Regression Analysis 

(1.6) 

(1.6a) 

Ordinarily, we do not know the values of the regression parameters f30 and f3, in regression 
model (1.1), and we need to estimate them from relevant data. Indeed, as we noted earlier, we 
frequently do not have adequate a priori knowledge of the appropriate predictor variables 
and of the functional form of the regression relation (e.g., linear or curvilinear), and we 
need to rely on an analysis of the data for developing a suitable regression model. 

Data for regression analysis may be obtained from nonexperimental or experimental 
studies. We consider each of these in tum. 

Observational Data 
Observational data are data obtained from nonexperimental studies. Such studies do not 
control the explanatory or predictor variable(s) of interest. For example, company officials 
wished to study the relation between age of employee (X) and number of days of illness 
last year (Y). The needed data for use in the regression analysis were obtained from per-
sonnel records. Such data are observational data since the explanatory variable, age, is not 
controlled. 

Regression analyses are frequently based on observational data, since often it is not 
feasible to conduct controlled experimentation. In the company personnel example just 
mentioned, for instance, it would not be possible to control age by assigning ages to persons. 
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A major limitation of observational data is that they often do not provide adequate infor-
mation about cause-and-effect relationships. For example, a positive relation between age of 
employee and number of days of illness in the company personnel example may not imply 
that number of days of illness is the direct result of age. It might be that younger employees 
of the company primarily work indoors while older employees usually work outdoors, and 
that work location is more directly responsible for the number of days of illness than age. 

Whenever a regression analysis is undertaken for purposes of description based on ob-
servational data, one should investigate whether explanatory variables other than those con-
sidered in the regression model might more directly explain cause-and-effect relationships. 

Experimental Data 
Frequently, it is possible to conduct a controlled experiment to provide data from which the 
regression parameters can be estimated. Consider, for instance, an insurance company that 
wishes to study the relation between productivity of its analysts in processing )(laims and 
length of training. Nine analysts are to be used in the study. Three of them will be selected 
at random and trained for two weeks, three for three weeks, and three for five weeks. 
The productivity ofthe analysts during the next 10 weeks will then be observed. The data 
so obtained will be experimental data because control is exercised over the explanatory 
variable, length of training. 

When control over the explanatory variable( s) is exercised through random assignments, 
as in the productivity study example, the resulting experimental data provide much stronger 
information about cause-and-effect relationships than do observational data. The reason is 
that randomization tends to balance out the effects of any other variables that might affect 
the response variable, such as the effect of aptitude of the employee on productivity. 

In the terminology of experimental design, the length of training assigned to an analyst in 
the productivity study example is called a treatment. The analysts to be included in the study 
are called the experimental units. Control over the explanatory variable(s) then consists of 
assigning a treatment to each of the experimental units by means of randomization. 

Completely Randomized Design 
The most basic type of statistical design for making randomized assignments of treatments to 
experimental units (or vice versa) is the completely randomized design. With this design, the 
assignments are made completely at random. This complete randomization provides that all 
combinations of experimental units assigned to the different treatments are equally likely, 
which implies that every experimental unit has an equal chance to receive anyone of the 
treatments. 

A completely randomized design is particularly useful when the experimental units are 
quite homogeneous. This design is veI); flexible; it accommodates any number of treatments 
and permits different for different treatments. Its chief disadvantage is that, 
when the experimental units are heterogeneous, this design is not as efficient as some other 
statistical designs. 

1.5 Overview of Steps in Regression Analysis 
The regression models considered in this and subsequent chapters can be utilized either 
for observational data or for experimental data from a completely randomized design. 
(Regression analysis can also utilize data from other types of experimental designs, but 
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FIGURE 1.8 
Typical 
Strategy for 
Regression 
Analysis. 

the regression models presented here will need to be modified.) Whether the data are 
observational or experimental, it is essential that the conditions of the regression model be 
appropriate for the data at hand for the model to be applicable. 

We begin our discussion of regression analysis by considering inferences about the re-
gression parameters for the simple linear regression model (1.1). For the rare occasion 
where prior knowledge or theory alone enables us to determine the appropriate regression 
model. inferences based on the regression model are the first step in the regression analysis. 
In the usual situation, however, where we do not have adequate knowledge to specify the 
appropriate regression model in advance, the first step is an exploratory study of the data, 
as shown in the flowchart in Figure 1.8. On the basis of this initial exploratory analysis, 
one or more preliminary regression models are developed. These regression models are 
then examined for their appropriateness for the data at hand and revised, or new models 
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are developed, until the investigator is satisfied with the suitability of a particular regres-
sion model. Only then are inferences made on the basis of this regression model, such as 
inferences about the regression parameters of the model or predictions of new observations. 

We begin, for pedagogic reasons, with inferences based on the regression model that is 
finally considered to be appropriate. One must have an understanding of regression models 
and how they can be utilized before the issues invol ved in the development of an appropriate 
regression model can be fully explained. 

1.6 Estimation of Regression Function 

Example 

The observational or experimental data to be used for estimating the parameters of the 
regression function consist of observations on the explanatory or predictor variable X and 
the corresponding observations on the response variable Y. For each trial, there is an X 
observation and a Y observation. We denote the (X, Y) observations for the t\rst trial as 
(X" YI), for the second trial as (X2, Y2), and in general for the ith trial as (Xi, Vi), where 
i = 1, ... ,n. 

In a small-scale study of persistence, an experimenter gave three subjects a very difficult 
task. Data on the age of the subject (X) and on the number of attempts to accomplish the 
task before giving up (Y) follow: 

Subject i: 

Age Xi: 
Number of attempts Yi: 

1 

20 
5 

2 

55 
12 

3 

30 
10 

In terms of the notation to be employed, there were n = 3 subjects in this study, the 
observations for the first subject were (X" YI ) = (20, 5), and similarly for the other 
subjects. 

Method of least -Squares 
To find "good" estimators of the regression parameters f30 and f31, we employ the method 
of least squares. For the observations (Xi> Vi) for each case, the method of least squares 
considers the deviation of Yi from its expected value: 

(1.7) 

In particular, the method of least squares requires that we consider the sum of the n squared 
deviations. This criterion is denoted by Q: 

n 

Q :L(Yi - f30 - (1.8) 
i=1 

According to the method of least squares, the estimators of f30 and f31 are those values 
bo and b" respectively, that minimize the criterion Q for the given sample observations 
(X" YI), (X2, Y2), ... , (X,,, Yn). 
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FIG URE 1.9 IUustration of Least Squares Criterion Q for Fit of a Regression Line-Persistence Study 
Example. 
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Figure 1.9a presents the scatter plot of the data for the persistence study example and the 
regression line that results when we use the mean of the responses (9.0) as the predictor 
and ignore X: 

Y = 9.0 + O(X) 
Note that this regression line uses estimates bo = 9.0 and bl = 0, and that Y denotes 
the ordinate of the estimated regression line. Clearly, this regression line is not a good 
fit, as evidenced by the large vertical deviations of two of the Y observations from the 
corresponding ordinates Y of the regression line. The deviation for the first subject, for 
which (X" YI ) = (20,5), is: 

YI - (bo + bIXI ) = 5 - [9.0 + 0(20)] = 5 - 9.0 = -4 

The sum of the squared deviations for the three cases is: 

Q = (5 - 9.0)2 + (12 - 9.0)2 + (10 - 9.0)2 = 26.0 

Figure 1.9b shows the same data with the regression line: 

Y = 2.81 + .177X 

The fit of this regression line is clearly much better. The vertical deviation for the first case 
now is: 

YI - (bo + bIXI) = 5 - [2.81 + .177(20)] = 5 - 6.35 = -1.35 

and the criterion Q is much reduced: 

Q = (5 - 6.35)2 + (12 - 12.55)2 + (10 - 8.12)2 = 5.7 

Thus, a better fit of the regression line to the data corresponds to a smaller sum Q. 
The objective of the method of least squares is to find estimates bo and bl for f30 and f31, 

respectively, for which Q is a minimum. In a certain sense, to be discussed shortly, these 
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estimates will provide a "good" fit of the linear regression function. The regression line in 
Figure 1.9b is, in fact, the least squares regression line. 

Least Squares Estimators. The estimators bo and bl that satisfy the least squares criterion 
can be found in two basic ways: 

1. Numerical search procedures can be used that evaluate in a systematic fashion the least 
squares criterion Q for different estimates bo and bl until the ones that minimize Q are 
found. This approach was illustrated in Figure 1.9 for the persistence study example. 

2. Analytical procedures can often be used to find the values of bo and bl that minimize 
Q. The analytical approach is feasible when the regression model is not mathematically 
complex. 

Using the analytical approach, it can be shown forregression model (1.1) that the values 
bo and bl that minimize Q for any particular set of sample data are given by the following 
., simultaneous equatIOns: 

2: Yi = nbo + b l 2: Xi 

2: Xi Yi = bo 2: Xi + b l 2: xi 
(1.9a) 

(1.9b) 

Equations (1.9a) and (1.9b) are called normal equations; bo and b l are called point esti-
mators of f30 and f31, respectively. 

The normal equations (1.9) can be solved simultaneously for bo and bl : 

b _ L:(Xi - X)(Yi - Y) 
1- L:(X; _ X)2 (l.lOa) 

bo = (2: Yi - b l 2: Xi) = Y - b l X (l.lOb) 

where X and Y are the means of the Xi and the Yi observations, respectively. Computer 
calculations generally are based on many digits to obtain accurate values for bo and bl • 

Comment 
The normal equations (1.9) can be derived by calculus. For given sample observations (Xi, Yi), the 
quantity Q in (1.8) is a function of f30 and f3,. The values of f30 and f3, that minimize Q can tie derived 
by differentiating (1.8) with respect to f30 and f3,. We obtain: 

We then set these partial derivatives equal to zero, using bo and b I to denote the particular values of 
f30 and f3, that minimize Q: 

-22:(y; - bo - bIXi) = 0 

-22: Xi(Yi - bo - b,Xi ) = 0 
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Simplifying, we obtain: 

Expanding, we have: 

" 
2:(Yi - bo - b,Xi) = 0 
;=1 

" 2: Xi(Yi - bo - b,Xi) = 0 
;=1 

2: Y; - nbo - b, 2: Xi = 0 

2: X ;Y; - bo 2: X; - b, 2: X; = 0 

from which the normal equations (1.9) are obtained by rearranging terms. 
A test of the second partial derivatives will show that a minimum is obtained with the least squares 

estimators bo and b l • • 

Properties of Least Squares Estimators. An important theorem, called the Gauss-
Markov theorem, states: 

Under the conditions of regression model (1.1), the least squares 
estimators bo and bl in (1.10) are unbiased and have minimum 
variance among all unbiased linear estimators. 

(1.11) 

This theorem, proven in the next chapter, states first that bo and bl are unbiased estimators. 
Hence: 

E{bo} = f30 E{br} = f31 

so that neither estimator tends to overestimate or underestimate systematically. 
Second, the theorem states that the estimators bo and bl are more precise (i.e., their 

sampling distributions are less variable) than any other estimators belonging to the class of 
unbiased estimators that are linear functions of the observations YI , ••• , Y". The estimators 
bo and bl are such linear functions of the Yi • Consider, for instance, bl • We have from (1.1Oa): 

b _ L:(Xi - X)(Yi - Y) 
1- L:(Xi _X)2 

It will be shown in Chapter 2 that this expression is equal to: 

where: 

Since the ki are known constants (because the Xi are known constants), b l is a linear 
combination of the Yi and hence is a linear estimator. 
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In the same fashion, it can be shown that bo is a linear estimator. Among all linear 
estimators that are unbiased then, bo and bl have the smallest variability in repeated samples 
in which the X levels remain unchanged. 

The Toluca Company manufactures refrigeration equipment as well as many replacement 
parts. In the past, one of the replacement parts has been produced periodically in lots of 
varying sizes. When a cost improvement program was undertaken, company officials wished 
to determine the optimum lot size for producing this part. The production of this part involves 
setting up the production process (which must be done no matter what is the lot size) and 
machining and assembly operations. One key input for the model to ascertain the optimum 
lot size was the relationship between lot size and labor hours required to produce the lot 
To determine this relationship, data on lot size and work hours for 25 recent production 
runs were utilized. The production conditions were stable during the six-month period in 
which the 25 runs were made and were expected to continue to be the same during the 
next three years, the planning period for which the cost improvement prograrrr.,was being 
conducted. 

Table 1.1 contains a portion of the data on lot size and work hours in columns 1 and 
2. Note that all lot sizes are multiples of 10, a result of company policy to facilitate the 
administration of the parts production. Figure 1.1Oa shows a SYSTAT scatter plot of the 
data. We see that the lot sizes ranged from 20 to 120 units and that none of the production 
runs was outlying in the sense of being either unusually small or large. The scatter plot also 
indicates that the relationship between lot size and work hours is reasonably linear. We also 
see that no observations on work hours are unusually small or large, with reference to the 
relationship between lot size and work hours. 

To calculate the least squares estimates bo and bl in (1.10), we require the deviations 
Xi - X and Yi - Y. These are given in columns 3 and 4 of Table 1.1. We also require 
the cross-product terms (Xi - X)(Yi - Y) and the squared deviations (Xi - X)2; these 
are shown in columns 5 and 6. The squared deviations (Yi - y)2 in column 7 are for 
later use. 

Data on Lot Size and Work Hours and Needed Calculations for Least Squares Estimates-Toluca 
Company Example. 

(1) (2) (3) (4) (5) (6) P) 
lot Work 

Run Size Hours 
Xj Yj Xj-X Y;-f (X j - X)(Y; - Y) (Xj - X)2 (Y; _ y)2 

1 80 399 10 .86.72 867.2 100 7,520.4 
2 30 121 -40 -191.28 7,651.2 1,600 36,588.0 
3 50 221 -20 - -91.28 1,825.6 400 8;332.0 

23 40 244 -30 -68.28 2,048.4 900 4,662.2 
24 80 342 10 29.72 297:2 100 883.3 
25· 70 323 0 10.72 0.0 0 114.9 

Total 1,750 7,807 0 0 70,690 19,800 307,203 
Mean 70.0 312.28 
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FIGURE 1.10 
SYSTAT 
Scatter Plot 
and Fitted 
Regression 
Line-Toluca 
Company 
Example. 

FIGURE 1.11 
Portion of 
MINITAB 
Regression 
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We see from Table 1.1 that the basic quantities needed to calculate the least squares 
estimates are as follows: 

2::(Xi - X)(Yi - Y) = 70,690 

'" - 2 L)Xi - X) = 19,800 

X = 70.0 
Y = 312.28 

Using (1.10) we obtain: 

L:(Xi - X)(Yi - Y) 70,690 
b l = L:(X

i 
_ X)2 = 19,800 = 3.5702 

bo = Y - blX = 312.28 - 3.5702(70.0) = 62.37 

Thus, we estimate that the mean number of work hours increases by 3.57 hours for each 
additional unit produced in the lot. This estimate applies to the range of lot sizes in the 
data from which the estimates were derived, namely to lot sizes ranging from about 20 to 
about 120. 

Figure 1.11 contains a portion of the MINITAB regression output for the Toluca Company 
example. The estimates bo and b l are shown in the column labeled Coef, corresponding to 
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the lines Constant and X, respectively. The additional infonnation shown in Figure 1.11 
will be explained later. 

point Estimation of Mean Response 

Example 

Estimated Regression Function. Given sample estimators bo and b l of the parameters 
in the regression function (1.3): 

E{Y} = f30 + f3IX 

we estimate the regression function as follows: 

V = bo+blX (1.12) 

where V (read Y hat) is the value of the estimated regression function at the level X of the 
predictor variable. 

We call a value of the response variable a response and E {Y} the mean respttnse. Thus, 
the mean response stands for the mean of the probability distribution of Y corresponding 
to the level X of the predictor variable. V then is a point estimator of the mean response 
when the level of the predictor variable is X. It can be shown as an extension of the Gauss-
Markov theorem (1.11) that V is an unbiased estimator of E {Y}, with minimum variance 
in the class of unbiased linear estimators. 

For the cases in the study, we will call Vi: 
i = 1, . .. ,n (1.13) 

thejitted value for the ith case. Thus, the fitted value Vi is to be viewed in distinction to the 
observed value Yi • 

For the Toluca Company example, we found that the least squares estimates of the regression 
coefficients are: 

bo = 62.37 bl = 3.5702 

Hence, the estimated regression function is: 

V = 62.37 + 3.5702X 

This estimated regression function is plotted in Figure 1.1Ob. It appears to be.a good 
description of the statistical relationship between lot size and work hours. 

To estimate the mean response for any level X of the predictor variable, we simply 
substitute that value of X in the estimated regression function. Suppose that we are interested 
in the mean number of work hours required when the lot size is X = 65; our point estimate is: 

I 

= 62.37 + 3.5702(65) = 294.4 

Thus, we estimate that the mean number of work hours required for production runs of 
X = 65 units is 294.4 hours. We !nterpret this to mean tlIat if many lots of 65 units are 
produced under the conditions of the 25 runs on which the estimated regression function is 
based, the mean labor time for these lots is about 294 hours. Of course, the labor time for 
anyone lot of size 65 is likely to fall above or below the mean response because of inherent 
variability in the production system, as represented by the error tenn in the model. 
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TABLE 1.2 
Fitted Values, 
Residuals, and 
Squared 
Residuals-
Toluca 
Company 
Example. 

Residuals 

Simple Linear Regression 

(1) (2) (3) (4) (5) 
Estimated 

lot Work Mean Squared 
Run Size Hours Response Residual 

Xi Y; f; y;-f;=ei (Y; - f;)2 = if 
1 80 399 347.98 51.02 2,603.0 
2 30 121 169.47 -48.47 2,349.3 
3 50 221 240.88 -19.88 395.2 

23 40 244 205.17 38.83 1,507.8 
24 80 342 347.98 -5.98 35.8 
25 70 323 312.28 10.72 114.9 ---

Total 1,750 7,807 7,807 0 54,825 

Fitted values for the sample cases are obtained by substituting the appropriate X values 
into the estimated regression function. For the first sample case, we have X I = 80. Hence, 
the fitted value for the first case is: 

V I = 62.37 + 3.5702(80) = 347.98 

This compares with the observed work hours of YI = 399. Table 1.2 contains the observed 
and fitted values for a portion of the Toluca Company data in columns 2 and 3, respectively. 

Alternative Model (1.6). When the alternative regression model (1.6): 

Yi = + f31 (Xi - X) + 8i 

is to be utilized, the least squares estimator bl of f31 remains the same as before. The least 
squares estimator of = f30 + f3IX becomes, from (1.1Ob): 

= bo + blX = CY - blX) + blX = Y 
Hence, the estimated regression function for alternative model (1.6) is: 

V = Y + bl(X - X) 

(1.14) 

(1.15) 

In the Toluca Company example, Y = 312.28 and X = 70.0 (Table 1.1). Hence, the 
estimated regression function in alternative form is: 

V = 312.28 + 3.5702(X -70.0) 

For the first lot in our example, Xl = 80; hence, we estimate the mean response to be: 

VI = 312.28 + 3.5702(80 -70.0) = 347.98 

which, of course, is identical to our earlier result. 

The ith residual is the difference between the observed value Yi and the corresponding fitted 
value Vi. This residual is denoted by ei and is defined in general as follows: 

(1.16) 
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For regression model (1.1), the residual ei becomes: 

ei = Yi - (bo + blXi) = Yi - bo - blXi (1.16a) 

The calculation of the residuals for the Toluca Company example is shown for a portion 
of the data in Table 1.2. We see that the residual for the first case is: 

el = YI - VI = 399 - 347.98 = 51.02 

The residuals for the first two cases are illustrated graphically in Figure 1.12. Note in 
this figure that the magnitude of a residual is represented by the vertical deviation of the Yi 
observation from the corresponding point on the estimated regression function (i.e., from 
the corresponding fitted value Vi). 

We need to distinguish between the model error term value 8i = Yi - E{Yd and the 
residual ei = Yi - Vi. The former involves the vertical deviation of Yi from the unknown 
true regression line and hence is unknown. On the other hand, the residual is the vertical 
deviation of Yi from the fitted value i\ on the estimated regression line, and it is known. 

Residuals are highly useful for studying whether a given regression model is appropriate 
for the data at hand. We discuss this use in Chapter 3. 

Properties of Fitted Regression line 
The estimated regression line (1.12) fitted by the method of least squares has a number of 
properties worth noting. These properties of the least squares estimated regression function 
do not apply to all regression models, as we shall see in Chapter 4. 

1. The sum of the residuals is zero: 
n 

(1.17) 

Table 1.2, column 4, illustrates this property for the example. Rounding 
errors may, of course, be present in any particular case, resulting in a sum of the residuals 
that does not equal zero exactly. 

2. The sum of the squared residuals, L is a minimum. lbis was the requirement to 
be satisfied in deriving the least squares estimators of the regression parameters since the 
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criterion Q in (1.8) to be minimized equals L when the least squares estimators bo and 
bl are used for estimating f30 and f31. 

3. The sum of the observed values Y; equals the sum of the fitted values V;: 
1l 1l 

2:Y; = 2: V; (1.18) 
;=1 ;=1 

This property is illustrated in Table 1.2, columns 2 and 3, for the Toluca Company example. 
It follows that the mean of the fitted values V; is the same as the mean of the observed 
values Y;, namely, Y. 

4. The sum of the weighted residuals is zero when the residual in the ith trial is weighted 
by the level of the predictor variable in the ith trial: 

" (1.19) 

5. A consequence of properties (1.17) and (1.19) is that the sum ofthe weighted residuals 
is zero when the residual in the ith trial is weighted by the fitted value of the response variable 
for the ith trial: 

n 

(1.20) 
;=1 

6. The regression line always goes through the point eX, Y). 

Comment 
The six properties of the fitted regression line follow directly from the least squares normal equa-
tions (1.9). For example, property 1 in (1.17) is proven as follows: 

2: e; = 2:(Y;-bo-b,x;) = 2:Y;-nbo-bt 2: X; 
= 0 by the first normal equation (1.9a) 

Property 6, that the regression line always goes through the point eX, Y), can be demonstrated 
easily from the alternative form (1.15) of the estimated regression line. When X = X, we have: . 

• 
1.7 Estimation of Error Tenns Variance (J'2 

The variance a 2 of the error terms 8; in regression model (1.1) needs to be estimated to 
obtain an indication of the variability of the probability distributions of Y. In addition, as 
we shall see in the next chapter, a variety of inferences concerning the regression function 
and the prediction of Y require an estimate of a 2 • 

Point Estimator of 0-2 

To lay the basis for developing an estimator of a 2 for regression model (1.1), we first 
consider the simpler problem of sampling from a single population. 

Single Population. We know that the variance a 2 of a single population is estimated by 
the sample variance s2. In obtaining the sample variance s2, we consider the deviation of 
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an observation Yi from the estimated mean Y, square it, and then sum an such squared 
deviations: 

n 

Such a sum is caned a sum of squares. The sum of squares is then divided by the degrees 
of freedom associated with it. This number is n - 1 here, because one degree of freedom is 
lost by using Y as an estimate of the unknown population mean f.1,. The resulting estimator 
is the usual sample variance: 

- 2 
2 (Yi - Y) s =='-----'-----

n-l 

which is an unbiased estimator of the variance a 2 of an infinite population. The sample 
variance is often called a mean square, because a sum of squares has been divided by the 
appropriate number of degrees of freedom. }., 

Regression Model. The logic of developing an estimator of a 2 for the regression model is 
the same as for sampling from a single population. Recall in this connection from (1.4) that 
the variance of each observation Yi for regression model (1.1) is a 2 , the same as that of each 
error term 8i. We again need to calculate a sum of squared deviations, but must recognize 
that the Yi now come from different probability distributions with different means that 
depend upon the level Xi. Thus, the deviation of an observation Yi must be calculated 
around its own estimated mean Vi. Hence, the deviations are the residuals: 

Yi - Vi =ei 
and the appropriate sum of squares, denoted by SSE, is: 

n n 

(1.21) 
i=l i=l 

where SSE stands for error sum of squares or residual sum of squares. 
The sum of squares SSE has n - 2 degrees of freedom associated with it. Two degrees 

of freedom are lost because both f30 and f31 had to be estimated in obtaining the estimated 
means'· Vi. Hence, the appropriate mean square, denoted by MSE or s2, is: 

2 
s2 = MSE = _S,_SE_ = =L=-(_1':_i -_Y_i)_ 

n-2 n-2 n-2 
"(1.22) 

where MSE stands for error mean square or residual mean square. . 
It can be shown that MSE is an unbiased estimator of a 2 for regression model (1.1): 

E{MSE} = a 2 (1.23) 

An estimator of the standard deviation a is simply s = ,JMSE, the positive square root of 
MSE. 

We will calculate SSE for the Toluca Company (1.21). The residuals were 
obtained earlier in Table 1.2, column 4. This table also shows the squared residuals in 
column 5. From these results, we obtain: 

SSE = 54,825 
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Since 25 - 2 = 23 degrees of freedom are associated with SSE, we find: 

s2 = MSE = 54,825 = 2,384 
23 

Finally, a point estimate of a, the standard deviation of the probability distribution of Y for 
any X, is s = ')2,384 = 48.8 hours. 

Consider again the case where the lot size is X = 65 units. We found earlier that the 
mean of the probability distribution of Y for this lot size is estimated to be 294.4 hours. 
Now, we have the additional information that the standard deviation of this distribution is 
estimated to be 48.8 hours. This estimate is shown in the MINITAB output in Figure 1.11, 
labeled as s. We see that the variation in work hours from lot to lot for lots of 65 units is 
quite substantial (49 hours) compared to the mean of the distribution (294 hours). 

1.8 Nonnal Error Regression Model 

Model 

No matter what may be the form of the distribution of the error terms 8; (and hence of the 
Vi), the least squares method provides unbiased point estimators of f30 and f3, that have 
minimum variance among all unbiased linear estimators. To set up interval estimates and 
make tests, however, we need to make an assumption about the form of the distribution of 
the 8;. The standard assumption is that the error terms 8; are normally distributed, and we 
will adopt it here. A normal error term greatly simplifies the theory of regression analysis 
and, as we shall explain shortly, is justifiable in many real-world situations where regression 
analysis is applied. 

The normal error regression model is as follows: 

Y; = f30 + f3,X; + 8; 

where: 

Y; is the observed response in the ith trial 
X; is a known constant, the level of the predictor variable in the ith trial 
f30 and f3, are parameters 
8; are independent N(O, a 2) 

i = 1, ... ,n 

Comments 
1. The symbol N (0, a 2) stands for normally distributed, with mean 0 and variance a 2• 

(1.24) 

2. The normal error model (1.24) is the same as regression model (1.1) with unspecified error 
distribution, except that model (1.24) assumes that the errors 8; are normally distributed. 

3. Because regression model (1.24) assumes thaI the errors are normally distributed, the assump-
tion of uncorrelatedness of the 8; in regression model (1.1) becomes one of independence in the 
normal error model. Hence, the outcome in anyone trial has no effect on the error rerm for any other 
trial-as to whether it is positive or negative, small or large. 
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4. Regression model (1.24) implies that the Yj are independent normal random variables, with 
mean E{Y;} = f30 + f3,Xf and variance a 2• Figure 1.6 pictures this normal error model. Each of the 
probability distributions of Y in Figure 1.6 is normally distributed, with constant variability, and the 
regression function is linear. 

5. The normality assumption for the error terms is justifiable in many situations because the error 
terms frequently represent the effects of factors omitted from the model that affect the response to 
some extent and that vary at random without reference to the variable X. For instance, in the Toluca 
Company example, the effects of such factors as time lapse since the last production run, particular 
machines used, season of the year, and personnel employed could vary more or less at random from 
run to run, independent of lot size. Also, there might be random measurement errors in the recording 
of Y, the hours required. Insofar as these random effects have a degree of mutual independence, the 
composite error term cf representing all these factors would tend to comply with the central limit 
theorem and the error term distribution would approach normality as the number of factor effects 
becomes large. 

A second reason why the normality assumption of the error terms is frequently justifiable is thaI 
the estimation and testing procedures to be discussed in the next chapter are based on the t distribution 
and are usually only sensitive to large departures from normality. Thus, unless the departures from 
normality are serious, particularly with respect to skewness, the actual confidence coefficients and 
risks of errors will be close to the levels for exact normality. • 

Estimation of Parameters by Method of Maximum likelihood 

FIGURE 1.13 
Densities for 
Sample 
Observations 
for Two 
Possible Values 
of It: Y1 = 250, 
Y2 = 265, 
Y3 =259. 

When the functional form of the probability distribution of the error terms is specified, 
estimators of the parameters f3o, f3" and a2 can be obtained by the method of maximum 
likelihood. Essentially, the method of maximum likelihood chooses as estimates those values 
of the parameters that are most consistent with the sample data. We explain the method of 
maximum likelihood first for the simple case when a single population with one parameter 
is sampled. Then we explain this method for regression models. 

Single Population. Consider a normal population whose standard deviation is known 
to be a = 10 and whose mean is unknown. A random sample of n = 3 observations is 
selected from the population and yields the results Y, = 250, Y2 = 265, Y3 = 259. We 
now wish to ascertain which value of fJ, is most consistent with the sample data. Consider 
fJ, = 230. Figure l.13a shows the normal distribution with fJ, = 230 and a = 10; also shown 
there are the locations of the three sample observations. Note that the sample obseryations 

J.L = 230 J.L = 259 

y y 

(a) (b) 
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would be in the right tail of the distribution if fJ, were equal to 230. Since these are unlikely 
occurrences, fJ, = 230 is not consistent with the sample data. 

Figure 1.13b shows the population and the locations of the sample data if fJ, were equal 
to 259. Now the observations would be in the center of the distribution and much more 
likely. Hence, fJ, = 259 is more consistent with the sample data than fJ, = 230. 

The method of maximum likelihood uses the density of the probability distribution at 
Yi (i.e., the height of the curve at Yi) as a measure of consistency for the observation Yi . 
Consider observation Y I in our example. If Y I is in the tail, as in Figure 1.13a, the height of 
the curve will be small. If Y I is nearer to the center of the distribution, as in Figure 1.13b, 
the height will be larger. Using the density function for a normal probability distribution 
in (A.34) in Appendix A, we find the densities for Y" denoted by I" for the two cases of 
fJ, in Figure 1.13 as follows: .... 

fJ, = 230: 1 [1 (250 - 230)2] II =,J2ii exp - - = .005399 
2Jr(IO) 2 10 

fJ, = 259: 1 [1 (256 - 259)2] /I =,J2ii exp - -2 = .026609 
2n(lO) 10 

The densities for all three sample observations for the two cases of fJ, are as follows: 

p, = 230 

.005399 

.000087 

.000595 

p, = 259 

.026609 

.033322 

.039894 

The method of maximum likelihood uses the product of the densities (i.e., here, the 
product of the three heights) as the measure of consistency of the parameter value with 
the sample data. The product is called the likelihood value of the parameter value fJ, and 
is denoted by L (fJ,). If the value of fJ, is consistent with the sample data, the densities will 
be relatively large and so will be the product (Le., the likelihood value). If the value of fJ, 
is not consistent with the data, the densities will be small and the product L(fJ,) will be 
small. 

For our simple example, the likelihood values are as follows for the two cases of fJ,: 

L(fJ, = 230) = .005399(.000087)(.000595) = .279x 10-9 

L(fJ, = 259) = .026609(.033322)(.039894) = .0000354 

Since the likelihood value L(fJ, = 230) is a very small number, it is shown in scientific 
notation, which indicates that there are nine zeros after the decimal place before 279. Note 
that L(fJ, = 230) is much smaller than L(fJ, = 259), indicating that fJ, = 259 is much more 
consistent with the sample data than fJ, = 230. 

The method of maximum likelihood chooses as the maximum likelihood estimate that 
value of fJ, for which the likelihood value is largest. Just as for the method of least squares, 
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there are two methods of finding maximum likelihood estimates: by a systematic numerical 
search and by use of an analytical solution. For some problems, analytical solutions for the 
maximum likelihood estimators are available. For others, a computerized numerical search 
must be conducted. 

For our example, an analytical solution is available. It can be shown that for a normal 
population the maximum likelihood estimator of fJ, is the sample mean Y. In our example, 
Y = 258 and the maximum likelihood estimate of fJ, therefore is 258. The likelihood value 
of fJ, = 258 is L(fJ, = 258) = .0000359, which is slightly larger than the likelihood value 
of .0000354 for fJ, = 259 that we had calculated earlier. 

The product of the densities viewed as a function of the unknown parameters is called 
the likelihood function. For our example, where a = 10, the likelihoorlfunction is: 

[ 
1 ]3 [ I (250-fJ,)2] /[ 1 (265-fJ,)2] L(fJ,) = J2Ji(IO) exp -"2 10 exp -"2 10 ko 

[ 
1 (259-fJ,)2] xexp --
2 10 

Figure 1.14 shows a computer plot of the likelihood function for our example. It is based 
on the calculation of likelihood values L(fJ,) for many values of fJ,. Note that the likelihood 
values at fJ, = 230 and fJ, = 259 correspond to the ones we determined earlier. Also note 
that the likelihood function reaches a maximum at fJ, = 258. 

The fact that the likelihood function in Figure 1.14 is relatively peaked in the neigh-
borhood of the maximum likelihood estimate Y =258 is of particular interest. Note, for 
instance, that for fJ, = 250 or fJ, = 266, the likelihood value is already only a little more 
than one-half as large as the likelihood value at fJ, = 258. This indicates that the max-
imum likelihood estimate here is relatively precise because values of fJ, not near the maxi-
mum likelihood estimate Y = 258 are much less consistent with the sample data. When the 
likelihood function is relatively flat in a fairly wide region around the maximum likelihood 

0.00004 

0.00003 

0.00002 ..... 

0.00001 

0.00000 '-____ """"'--L-_'-----'-_--'-----=_---'------' 
220 230 240 250 260 270 280 290 300 
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estimate, many values of the parameter are almost as consistent with the sample data as the 
maximum likelihood estimate, and the maximum likelihood estimate would therefore be 
relatively imprecise. 

Regression Model. The concepts just presented for maximum likelihood estimation of 
a population mean carry over directly to the estimation of the parameters of normal error 
regression model (1.24). For this model, each Yi observation is normally distributed with 
mean {30 + f3, Xi and standard deviation a. To illustrate the method of maximum likelihood 
estimation here, consider the earlier persistence study example on page 15. For simplicity, 
let us suppose that we know a = 2.5. We wish to determine the likelihood value for the 
parameter values f30 = 0 and f3, = .5. For subject 1, X, = 20 and hence the mean of the 
probability distribution would be f30 + (3,X, = 0 + .5(20) = 10.0. Figure l.15a shows 
the normal distribution with mean 10.0 and standard deviation 2.5. Note that the observed 
value Y, = 5 is in the left tail of the distribution and that the density there is relatively small. 
For the second subject, X2 = 55 and hence (30 + f3, X2 = 27.5. The normal distribution with 
mean 27.5 is shown in Figure I.I5b. Note that the obsetyed value Y2 = l2 is most unlikely 
for this case and that the density there is extremely small. Finally, note that the observed 
value Y3 = 10 is also in the left tail of its distribution if f30 = 0 and f3, = .5, as shown in 
Figure I.I5c, and that the density there is also relatively small. 

FIGURE 1.15 Densities for Sample Observations if Po = 0 and P1 = 5-Persistence Study Example. 
(a) (b) (c) 

Xl = 20, Yl = 5 X2 = 55, Y2 = 12 X3 = 30, Y3'= 10 
f30 + f3l Xl = .5(20) = 10 f30 + f3,X2 = .5(55) = 27.5 f30 + f3l X3 = .5(30) = 15 

Y r 27.5' Y Y 
Y2 

(d) Combined Presentation 

o 
Age 
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Figure 1.15d combines all of this information, showing the regression function E {Y} = 
0+ .5X, the three sample cases, and the three normal distributions. Note how poorly the 
regression line fits the three sample cases, as was also indicated by the three small density 
values. Thus, it appears that f30 = 0 and f31 = .5 are not consistent with the data. 

We calculate the densities (i.e., heights of the curve) in the usual way. For Y I = 5, 
X I = 20, the normal density is as follows when f30 = 0 and f31 = .5: 

1 [1 (5 - 10.0)2] II = frC exp - -= .021596 
V 2n (2.5) 2 2.5 l 

The other densities are fz = .7175 X 10-9 and h = .021596, and the likelihood value of 
f30 = 0 and f31 = .5 therefore is: 

)\:, 

L(f3o = 0, f31 = .5) = .021596(.7175 x 10-9)(.021596) = .3346 x 1Ok-.12 

In general, the density of an observation Y; for the normal error regression model (1.24) 
is as follows, utilizing the fact that E{Y;} = f30 + f3IXi and a 2{y;} = a 2: 

1 [1 (Y; - f30 - f31 Xi ) 2] f; = --exp --
-J2iia 2 a 

(1.25) 

The likelihood function for n observations Y" Y2 , ••• , Yn is the product ofthe individual 
densities in (1.25). Since the variance a 2 of the error terms is usually unknown, the likelihood 
function is a function of three parameters, f3o, f31, and a 2: 

2 rrn 1 [1 2] L(f3o, f31> a ) = i=1 (2na 2)1/2 exp - 2a2 (Yi - f30 - f3I X i) 

(1.26) 

The values of f3o, f31, and a 2 that maximize this likelihood function are the maximum 
likelihood estimators and are denoted by So, S I, and 8 2 , respectively. These estimators can 
be found analytically, and they are as follows:' 

Parameter 

f30 
fh _ 

Maximum likelihood Estimator 

I = bo same as (1.10b) 
= b, same as (l.lOa) 

,,(y, _ }>-)2 
8 2 = I I 

n 

(1.27) 

Thus, the maximum likelihood estimators of f30 and f31 are the same estimators as those 
provided by the method of least squares. The maximum likelihood estimator 8 2 is biased, 
and ordinarily the unbiased estimator MSE as given in (1.22) is used. Note that the unbi-
ased estimator MSE or s2 differs but slightly from the maximum likelihood estimator 8 2, 
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Example 

especially if n is not small: 

S2 = MSE = _n_a-2 

n-2 
(1.28) 

For the persistence study example, we know now that the maximum likelihood estimates of 
f30 andf31 are bo =2.81 and b l = .177, the same as the least squares estimates in Figure 1.9b. 

Comments 
1. Since the maximum likelihood estimators and are the same as the least squares estimators 

ho and h" they have the properties of all least squares estimators: 
a. They are unbiased. 
h. They have minimum variance among all unbiased linear estimators. 
In addition, the maximum likelihood estimators ho and h, for the normal error regression model 
(1.24) have other desirable properties: 
c. They are consistent, as defined in (A 52). 
d. They are sufficient, as defined in (A53). 
e. They are minimum variance unbiased; that is, they have minimum variance in the class of all 

unbiased estimators (linear or otherwise). 
Thus, for the normal error model, the estimators ho and h, have many desirable properties. 

2. We find the values of /30, f3" and a 2 that maximize the likelihood function L in (1.26) by taking 
partial derivatives of L with respect to /30, f3" and a 2 , equating each of the partials to zero, and 
solving the system of equations thus obtained. We can work with loge L, rather than L, because 
both L and loge L are maximized for the same values of /30, f3" and a 2 : 

n n. 2 1 2:: 2 log L = --lou 2][ - -lou a - - (Y - f30 - f3,X) e 2 oe 2 oe 20'2 I I 
(1.29) 

Partial differentiation of the logarithm of the likelihood function is much easier; it yields: 

We now set these partial derivatives equal to zero, replacing /30, f3" and a 2 by the estimators 
and (}2. We obtain, after some simplification: 

(1.30a) 

2:: X;(Y; - - = 0 (1.30b) 

'\" 2 
L..,(Y; - f30 - f3!X;) = {}2 (1.30c) 

n 
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Formulas (1.30a) and (1.30b) are identical to the earlier least squares normal equations (1.9), and 
formula (1.30c) is the biased estimator of a 2 given earlier in (1.27). • 

1.1. BMDP New System 2.0. Statistical Solutions, Inc. 
1.2. MINITAB Release 13. Minitab Inc. 
1.3. SASjSTPU Release 8.2. SAS Institute, Inc. 
1.4. SPSS 11.5 for Windows. SPSS Inc. 
1.5. SYSTAT 10.2. SYSTPU Software, Inc. 
1.6. JMP Version 5. SAS Institute, Inc. 
1.7. S-Plus 6 for Windows. Insightful Corporation. 
1.8. MA1LAB 6.5. The MathWorks, Inc. 

1.1. Refer to the sales volume example on page 3. Suppose that the number of units sold is measured 
accurately, bur clerical errors are frequently made in determining the dollar sales. Would the 
relation between the number of units sold and dollar sales still be a functional one? Discuss. 

1.2. The members of a health spa pay annual membership dues of $300 plus a charge of $2 for each 
visit to the spa. Let Y denote the dollar cost for the year for a member and X the number of 
visits by the member during the year. Express the relation between X and Y mathematically. 
Is it a functional relation or a statistical relation? 

1.3. Experience with a certain type of plastic indicates that a relation exists between the hardness 
(measured in Brinell units) of items molded from the plastic (Y) and the elapsed time since ter-
mination of the molding process (X). It is proposed to study this relation by means of regression 
analysis. A participant in the discussion objects, pointing out that the hardening of the plastic 
"is the result of a natural chemical process that doesn't leave anything to chance, so the relation 
must be mathematical and regression analysis is not appropriate." Evaluate this objection. 

1.4. In Table 1.1, the lot size X is the same in production runs 1 and 24 but the work hours Y differ. 
What feature of regression model (1.1) is illustrated by this? 

1.5. When asked to state the simple linear regression model, a student wrote it as follows: E {Y;} = 
f30 + fhX; + CI' Do you agree? 

1.6. Consider the normal regression model (1.24). Suppose that the parameter valud are 
f30 = 200, f31 = 5.0, and a = 4. 
a Plot this normal error regression model in the fashion of Figure 1.6. Show the distributions 

of Y for X = 10, 20, and 40. 
b. Explain the meaning of the parameters f30 and f31. Assume that the scope of the model 

includes X = O. 
1.7. In a simulation exercise, regression model (1.1) applies with f30 = 100, f31 = 20, and a 2 = 25. 

An observation on Y will be made for X = 5. 
a. Can you state the exact probability that Y will fall between 195 and 205? Explain. 
b. If the normal error regression model (1.24) is applicable, can you now state the exact prob- Ii. 

ability that Y will fall between 195 and 205? If so, state it. 
1.8. In Figure 1.6, suppose another Y observation is obtained at X = 45. Would E{Y} for this new 

observation still be 104? Would the Y value for this new case again be 108? 
1.9. A student in accounting enthusiastically declared: "Regression is a very powerful tool. We can 

isolate fixed and variable costs by fitting a linear regression model, even when we have no data 
for small lots." Discuss. 

'i , 

ij 

i1 

!I ,. 
/' d. 

, 
" 
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1.10. An analyst in a large corporation studied the relation between current annual salary (Y) and 
age (X) for the 46 computer programmers presently employed in the company. The analyst 
concluded that the relation is curvilinear, reaching a maximum at 47 years. Does this imply 
that the salary for a programmer increases until age 47 and then decreases? Explain. 

1.l1. The regression function relating production output by an employee after taking a training 
program (Y) to the production output before the training program (X) is E{Y} = 20 + .9SX, 
where X ranges from 40 to 100. An observer concludes that the training program does not raise 
production output on the average because f3, is not greater than 1.0. Comment. 

1.12. In a study of the relationship for senior citizens between physical activity and frequency of 
colds, participants were asked to monitor their weekly time spent in exercise over a five-year 
period and the frequency of colds. The study demonstrated that a negative statistical relation 
exists between time spent in exercise and frequency of colds. The investigator conclooed that 
increasing the time spent in exercise is an effuctive strategy for reducing the frequency of colds 
for senior citizens. 
a Were the data obtained in the study observational or experimental data? 
b. Comment on the validity of the conclusions reached by the iI.lVestigator. 
c. Identify two or three other explanatory variables that might affect both the time spent in 

exercise and the frequency of colds for senior citizens simultaneously. 
d. How might the study be changed so that a valid conclusion about causal relationship between 

amount of exercise and frequency of colds can be reached? 
1.13. Computer programmers employed by a software developer were asked to participate in a month-

long training seminar. During the seminar, each employee was asked to record the number of 
hours spent in class preparation each week. After completing the seminar. the productivity level 
of each participant was measured. A positive linear statistical relationship between participants' 
productivity levels and time spent in class preparation was found. The seminar leader concluded 
that increases in employee productivity are caused by increased class preparation time. 

a Were the data used by the seminar leader observational or experimental data? 
b. Comment on the validity of the conclusion reached by the seminar leader. 
c. Identify two or three alternative variables that might cause both the employee productivity 

scores and the employee class participation times to increase (decrease) simultaneously. 
d. How might the study be changed so that a valid conclusion about causal relationship between 

class preparation time and employee productivity can be reached? 

1.14. Refer to Problem 1.3. Four different elapsed times since termination of the molding process 
(treatments) are to be studied to see how they affect the hardness of a plastic. Sixteen batches 
(experimental units) are available for the study. Each treatment is to be assigned to four exper-
imental units selected at random. Use a table of random digits or a random number generator 
to make an appropriate randomization of assignments. 

!.IS. The effects of five dose levels are to be studied in a completely randomized design, and 20 
experimental units are available. Each dose level is to be assigned to four experimental units 
selected at random. Use a table of random digits or a random number generator to make an 
appropriate randomization of assignments. 

1.16. Evaluate the following statement: "For the least squares method to be fully valid, it is required 
that the distribution of Y be normal." 

1.17. A person states that ho and h, in the fitted regression function (1.13) can be estimated by the 
method of least squares. Comment. 

1.18. According to (1.17), Lei = 0 when regression model (1.1) is fitted to a set of n cases by the 
method of least squares. Is it also true that L E:i = O? Comment. 
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1.19. Grade point average. The director of admissions of a small college selected 120 students at 
random from the new freshman class in a study to determine whether a student's grade point 
average (OPA) at the end of the freshman year (Y) can be predicted from the ACT test score (X). 
The results of the study follow. Assume that first-order regression model (1.1) is appropriate. 

;: 
21 

3.897 

2 

14 
3.885 

3 

28 
3.778 

118 

28 
3.914 

119 

16 
1.860 

120 

28 
2.948 

a. Obtain the least squares estimates of f30 and f3[, and state the estimated regression function. 
b. Plot the estimated regression function and the data."Does the estimated regression function 

appear to fit the data well? 
c. Obtain a point estimate of the mean freshman OPA for students with ACT test score X = 30. 
d. What is the point estimate of the change in the mean response when the entrance test 

increases by one point? 
* 1.20. Copier maintenance. The Tri-City Office Equipment Corporation sells an imported copier on 

a franchise basis and performs preventive maintenance and repair service on this copier. The 
data below have been collected from 45 recent calls on users to perform routine preventive 
maintenance service; for each call, X is the number of copiers serviced and Y is the total 
number of minutes spent by the service person. Assume that first-order regression model (1.1) 
is appropriate. 

;: 1 2 3 

Xi: 2 4 3 
Yi: 20 60 46 

a. Obtain the estimated regression function. 

43 

2 
27 

44 

4 
61 

45 

5 
77 

b. Plot the estimated regression function and the data. How well does the estimated regression 
function fit the data? 

c. Interpret bo in your estimated regression function. Does bo provide any relevant information 
here? Explain. 

d. Obtiun a poim estimate of the mean service time when X = 5 copiers are serviced. 
*1.21. Airfreight breakage. A substance used in biological and medical research is shipped by air-

freight to users in cartons of 1,000 ampules. The data below, involving 10 shipments, were 
collected on the number of times the carton was transferred from one aircraft to another over 
the shipment route (X) and the number of ampules found to be broken upon arrival (Y). Assume 
that first-order regression model (1.1) is appropriate. 

;: 
1 

16 

2 

o 
9 

3 

2 
17 

4 

o 
12 

5 

3 
22 

6 

1 
13 

7 

o 
8 

8 

15 

9 

2 
19 

10 

o 
11 

a. Obtain the estimated regression function. Plot the estimated regression function and the 
data. Does a linear regression function appear to give a good fit here? 

b. Obtain a point estimate of the expected number of broken ampules when X = 1 transfer is 
made. 
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c. Estimate the increase in the expected number of ampules broken when there are 2 transfers 
as compared to 1 transfer. 

d. Verify that your fitted regression line goes through the point (X, Y). 
1.22. Plastic hardness. Refer to Problems 1.3 and 1.14. Sixteen batches of the plastic were made, 

and from each batch one test item was molded. Each test item was randomly assigned to one of 
the four predetermined time levels, and the hardness was measured after the assigned elapsed 
time. The results are shown below; X is the elapsed time in hours? and Y is hardness in Brinell 
units. Assume that first-order regression model (1.1) is appropria'te. 

;: 

16 
199 

2 

16 
205 

3 

16 
196 

14 

40 
248 

15 

40 
253 

16 

40 
746 

a. Obtain the estimated regression function. Plot the estimated regression function and the 
data. Does a linear regression function appear to give a good fit here? 

b. Obtain a point estimate of the mean hardness when X = 40 hours. 
c. Obtain a point estimate of the change in mean hardness when X increases by 1 hour. 

1.23. Refer to Grade point average Problem 1.19. 

a Obtain the residuals ej. Do they sum to zero in accord with (1.17)? 
b. Estimate (J"2 and (J". In what units is (J" expressed? 

*1.24. Refer to Copier maintenance Problem 1.20. 

a Obtain the residuals ej and the sum of the squared residuals L e'f. What is the relation 
between the sum of the squared residuals here and the quantity Q in (1.8)? 

b. Obtain point estimates of (J"2 and (J". In what units is (J" expressed? 

*1.25. Refer to Airfreight breakage Problem 1.21. 

a. Obtain the residual for the first case. What is its relation to 8,? 
b. Compute Lei and MSE. What is estimated by MSE? 

1.26. Refer to Plastic hardness Problem 1.22. 

a Obtain the residuals ej. Do they sum to zero in accord with (1.17)? 
b. Estimate (J"2 and (J". In what units is (J" expressed? 

* 1.27. Muscle mass. A person's muscle mass is expected to decrease with age. To explore this rela-
tionship in women, a nutritionist randomly selected 15 women from each lO-year age group, 
beginning with age 40 and ending with age 79. The results follow; X is age, and Y is a measure 
of muscle mass. Assume that first-order regression model (1.1) is appropriate. 

;: 
43 

106 

2 

41 
106 

3 

47 
97 

58 

76 
56 

59 

72 
70 

60 

76 
74 

a. Obtain the estimated regression function. Plot the estimated regression function and the data. 
Does a linear regression function appear to give a good fit here? Does your plot support the 
anticipation that muscle mass decreases with age? 

b. Obtain the following: (1) a point estimate of the difference in the mean muscle mass for 
women differing in age by one year, (2) a point estimate of the mean muscle mass for women 
aged X = 60 years, (3) the value of the residual for the eighth case, (4) a point estimate of (J"2. 
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1.28. Crime rate. A criminologist studying the relationship between level of education-and crime 
rate in medium-sized U.S. counties collected the following data for a random sample of 84 coun-
ties; X is the percentage of individuals in the county having at least a high-school diploma, and 
Y is the crime rate (crimes reported per 100,000 residents) last year. Assume that first-order 
regression model (1.1) is appropriate. 

i: 
74 

8,487 

2 

82 
8,179 

3 

81 
8,362 

82 

88 
8,040 

83 

83 
6,981 

84 

76 
7,582 

a Obtain the estimated regression function. Plot the estimated regression function and the 
data. Does the linear regression function appear to give a good fit here? Discuss. 

b. Obtain point estimates of the following: (1) the difference in the mean crime rate for two 
counties whose high-school graduation rates differ by one percentage point, (2) the mean 
crime rate last year in counties with high school graduation percentage X = 80, (3) BIO, 

(4)a2 • 

1.29. Refer to regression model (1.1). Assume that X = 0 is within the scope of the model. What is 
the implication for the regression function if f30 = 0 so that the model is Yi = f31 Xi + Bi? How 
would the regression function plot on a graph? 

1.30. Refer to regression model (1.1). What is the implication for the regression function if f31 = 0 
so that the model is Yi = f30 + Bj? How would the regression function plot on a graph? 

1.31. Refer to Plastic hardness Problem 1.22. Suppose one test item was molded from a single 
batch of plastic and the hardness of this one item was measured at 16 different points in time. 
Would the error term in the regression model for this case still reflect the same effects as for 
the experiment initially described? Would you expect the error terms for the different points in 
time to be uncorrelated? Discuss. 

1.32. Derive the expression for bi in (UOa) from the normal equations in (1.9). 
1.33. (Calculus needed.) Refecro the regression model Yj = f30 + Bi in Exercise 1.30. Derive the 

least squares estimator of f30 for this model. 
1.34. Prove that the least squares estimator of f30 obtained in Exercise 1.33 is unbiased. 
1.35. Prove the result in (1.18)-that the sum of the Yobservations is the same as the sum of the 

fitted values. 
1.36. Prove the result in (1.20) - that the sum of the residuals weighted by the fitted values is zero. 
1.37. Refer to Table l.l for the Toluca Company example. When asked to present a point estimate 

of the expected work hours for lot sizes of 30 pieces, a persbn gave the estimate 202 because 
this is the mean number of work hours in the three-runs of size 30 in the study. A critic states 
that this person's approach "throws away" most of the data in the study because cases with lot 
sizes other than 30 are ignored. Comment. 

1.38. In Airfreight breakage Problem 1.21, the least squares estimates are bo = 10.20 and1J I = 4.00, 
and L e; = 17.60. Evaluate the least squares criterion Q in (1.8) for the estimates (1) bo = 9, 
b l = 3; (2) bo = 11, b l = 5. Is the criterion Q larger for these estimates than for the least squares 
estimates? 

1.39. Two observations on Y were obtained at each of three X levels, namely, at X = 5, X = 10, and 
X = 15. 
a. Show that the least squares regression line fitted to the three points (5, f I ), (10, f 2), and 

(15, f3), where f I, f2, and f3 denote the means of the Yobservations at the three X levels, 
is identical to the least squares regression line fitted to the original six cases. 
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Projects 

b. In this study, could the error term variance a 2 be estimated without fitting a regression line? 
Explain. 

lAO. In fitting regression model (1.1), it was found that observation Yi fell directly on the fitted 
regression line (Le., Yi = i\). If this case were deleted, would the least squares regression line 
fitted to the remaining n - 1 cases be changed? [Hint: What is the contribution of case i to the 
least squares criterion Q in (1.8)?] 

1041. (Calculus needed.) Refer to the regression model Yi = /3,Xi+ei, i = 1, ... , n, in Exercise 1.29. 

1.42. 

a. Find the least squares estimator of /3, . 
b. Assume that the error terms ei are independent N (0, ( 2) and that a 2 is known. State the 

likelihood function for the n sample observations on Y and obtain the maximum likelihood 
estimator of /3,. Is it the same as the least squares estimator? 

c. Show that the maximum likelihood estimator of /3, is unbiased. 

Typographical errors. Shown below are the number of galleys for a manuscript (X) and the 
dollar cost of correcting typographical errors (Y) in a random sample of recent orders handled by 
a firm specializing in technical manuscripts. Assume that the regression model Y; = /3, Xi + ei 
is appropriate, with normally distributed independent error terms whose variance is a 2 = 16. 

;: 

Xi: 
Yi : 

7 
128 

2 

12 
213 

3 

4 
75 

4 
14 

250 

5 

25 
446 

a. State the likelihood function for the six Y observations, for a 2 = 16. 

6 

30 
540 

b. Evaluate the likelihood function for /3, = 17, 18, and 19. For which of these /31 values is 
the likelihood function largest? 

c. The maximum likelihood estimator is hi = LXi Yi / L Xi. Find the maximum likelihood 
estimate. Are your results in part (b) consistent with this estimate? 

d. Using a computer graphics or statistics package, evaluate the likelihood function for values 
of /3, between /3, = 17 and /3, = 19 and plot the function. Does the point at which the 
. likelihood function is maximized correspond to the maximum likelihood estimate found in 
part (c)? 

1.43. Refer to the CDI data set in Appendix C.2. The number of active physicians in a CDI (Y) is 
expected to be related to total population, number of hospital beds, and total personal income. 
Assume that first-order regression model (1.1) is appropriate for each of the three predictor 
variables. 

a. Regress the number of active physicians in turn on each of the three predictor variables. 
State the estimated regression functions. 

b. Plot the three estimated regression functions and data on separate graphs. Does a linear 
regression relation appear to provide a good fit for each of the three predictor variables? 

c. Calculate MSE for each of the three predictor variables. Which predictor variable leads to 
the smallest variability around the fitted regression line? 

1.44. Refer to the CDI data set in Appendix C.2. 

a. For each geographic region, regress per capita income in a CDr (Y) against the per-
centage of individuals in a county having at least a bachelor's degree (X). Assume that 


